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A breathing soliton-like structure in a dispersion-managed optical fiber system is studied. It is proved that, for
negative average dispersion, the breathing soliton isforbidden, provided that the modulus of average dispersion
exceeds a threshold which depends on the soliton amplitude. © 2000 MAIK “ Nauka/Interperiodica” .
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Propagation of an optical pulse in nonlinear media
with varying dispersion is both a fundamental [1] and
an important applied problem [2-8], because the dis-
persion-managed (DM) system, which is a system with
periodic dispersion variation along an optical fiber, is
one of the most prospective candidates for ultrafast
high-bit-rate optical communication lines. Lossless
propagation of an optical pulse in a DM fiber is
described by a nonlinear Schrédinger equation (NLS)
with periodically varying dispersion d(2):

iu,+d@uy, +|ul’u = 0, 1)

where u is the envelope of the optical pulse, z is the
propagation distance, and all quantities are dimension-
less. Consider a two-step periodic dispersion map

d(2) =dy+ d(@) , where d(z) =d, for 0<z+nL<L, and

d(2 =d,forL; <z+nL<L,+Ly; dyisthe path-aver-
aged dispersion; d; and d, are the amplitudes of disper-
sion variation subject to the condition d,L, + d,L, = 0;
L =L, + L, isthe dispersion compensation period; and
n is an arbitrary integer number. Equation (1) aso
describes the pulse propagation in a fiber with losses
compensated by periodically placed amplifiers, if the
distance between amplifiersis much lessthan L.

In alinear regime, in which the nonlinear term in
Eq. (1) isnegligible, the periodical variation of disper-
sion is a way to overcome pulse broadening due to
chromatic dispersion, provided that the residual disper-
sion dyissmall enough. However, in areal optical fiber,
the nonlinear term in Eq. (1) is important, because the
optical pulse amplitude should be large enough to get a
high signal/noise ratio. One of the fascinating features
of the DM system is the numerical observation of a
space-breathing soliton-like structure, which is called
the DM soliton, for both positive and negative residual
dispersion d, [9]. This observation is in sharp contrast

L This article was submitted by the authorsin English.

with the system described by the NLS with constant
dispersion, where stable soliton propagation is possible
only for positive dispersion [10], because the nonlin-
earity can continuously compensate the positive disper-
sion only. In the DM soliton, the balance between the
nonlinearity and dispersion is achieved, on average,
over the dispersion period L, which lifts the require-
ment for the positive dispersion sign. Nevertheless, it
was never proved that the DM soliton redly exists,
because there is a possibility that thisis a rather long-
lived quasi-stable breathing pulse which decays in a
long distance z It is shown here that for negative d, a
DM soliton can exist only if |dy| is small enough to
allow nonlinear compensation of pulse broadening due
to the dispersion over distance L.

Equation (1) can be written in the Hamiltonian form
iu, = 0H/du*, where the Hamiltonian

H = I[d(z)|ut|2—|—“2|j}dt )

isanintegral of motion on each interval of aconstant dis-
persion d(2) = const. Equation (1) is reduced to the usual
NLSon such intervals. At pointsz=nL andz=nL + L,
wherenisan arbitrary integer number, the Hamiltonian
experiences jumps due to jumps of the dispersion,
although the value of u is a continuous function of z at
these points. In contrast to the Hamiltonian, the time-

averaged optical power N = [|ul?dt, or number of par-

ticles in the quantum mechanical interpretation of NLS
(in this interpretation, the coordinate z means some
“time” and actual time t has the meaning of “coordi-
nate”) is an integral of motion for al z. Consider the z

dependence of the quantity A = J’ t°]u)’dt . AN is the

average width of atime distribution of u, or simply 20
in the quantum mechanical interpretation of NLS.
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Using (1) and integrating by parts, one gets for the
first z derivative

A, = d(z)IZit(uu{* —ull,)dt. ©)

Inasimilar way after the second differentiation with
respect to z, one gets

d
A,, = 4dH + 4d°X + HZAZ, (4)

where X = |ut|2dt. It follows from Eq. (3), which is

often called the virial theorem (see, e.g., [11, 12]), that
A, experiences finite jJumps corresponding to jumps of
a step-wise function d(2):

_dotd,
AZ|z:L1+0 - d0+dlAZz=L1—0, ( )
5
_ d0+dl
AZ|Z:L+O ; d0+d2AZz=L—0

Set X(2) = X, + 0X(2), X(0) = X,; then one can integrate
Eq. (4) over theintervals (0, L,), (L4, L):

Adlz=1,-0= Adlz= 040
Ly

+4[[(do+ d)H, + (do +dy)*X]dz,

(6)
Ale: L-0 = AZ|z: L,+0
L
+4[[(do+ d)H, + (do +d,)*X]dz,
Ly
where
H; = (do+d;)Xo—Yo,
(7)

Hy = (do+d2)Xo—Yo—(d; —d2)0X]|,_

are the Hamiltonian values on the intervals (0O, L,),
(L, L) respectively:

Y(2) EI%‘dt’ Y, = Y(0).

Here, the conservation of H; oninterval (O, L,) is used
in deriving the expression for H..

The DM soliton solution of Eq. (1) (see[13]) isgiven
by u = U(z t)exp(ikz), where k is an arbitrary real con-
stant and U (z+ L, t) = U (z t) isaperiodic function of z,
U(z tly . » — 0. Thus, for aDM soliton AJ,-, 4o =

LUSHNIKOV

A, -0+ 0 Thiscondition can berecast, viaEgs. (5)—7),
into the form
z= L1i|

L L )
+ I(do +d,)*3Xdz + I(do +d,)?5Xdz = 0.
0 L,

L(dy+ o) 200X~ Yo + (dy ~ ) 728X

The next step is to consider the dX(2) dependence.
Using Eg. (1) and integrating by parts, one can get

X, = 4J'(p(RtR3dt, 9)

whereu = Re?, pand Rarereal, and R= 0. Consider an
upper bound of X,, whichisgiven by achain of inequal-
ities

4 J’q)t RR%dt < 4max(R®) J'|(pth Ridt<4x¥*N", (10)
where the following inequalities are used:

2@qRR< (@R)’+R;,
t

max(R’) < II(RZ)t-Idt' (11)

sJ’I(RZ)tI dt < 2[R|R|dt < ONV2 X2

(in the last expression, the Cauchy—Schwarz inequal-
ity is also used). Equations (9) and (10) can be
integrated over z to give (it is assumed below that

2XYP N max(Ly, Ly) < 1)

X < Xo/ (1—2XY2NY22)?, (12)

In a similar way, using inequality X, = —4J’|(pth| Ridt
following from Eqg. (9), one can get the lower bound for
X(2):

2

X = Xo/ (1+2XT2NYZ)". (13)

For the DM soliton X(L) = X,, and, thus, it is more con-
venient to use similar inequalitiesfor L; < z<L:

Xo
1+ 2XY2NY2(L = 2))°
( 0 X( ) (14)
<X< 0 .
(1-2XY*N"4(L-2))
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Equations (8), (12)—14) result in the inequality
|d; —dj szo[ 1

12doXo— Yg < _1}
L (1-2X2NY2L,)°

(15)
L 2XONT (do+d)’L] | (do+dy)’Ls
|do+dyfL| 1 —2x¥2NY2L, 1-2XY2NY2L,

Equation (15) isthe main result of this paper. Equation
(15) is a consequence of theinitial assumption that the
DM soliton existsfor given parametersL,, Ly, dy, d;, d,
and integral values X,, Y,, N, which depend on u,-
only. Thus, the DM soliton can exist only if this ine-
quality isfulfilled.

Notethat if one assumes uniqueness of the DM soli-
ton solution for a given k and soliton width, then, as

shown in [13], [ul|,-¢ = [ul|,-,. In such a case, the
term &X|,_  in Eq. (8) vanishes and instead of (15),
one can get amore strict inequality. However, this pos-
sibility is disregarded here for the sake of generality.
To clarify the physical consequences of Eq. (15),
consider an optical pulsewith atypica amplitude p and
atypical timewidth ty. Then, N ~ [p[’to, X, ~ |P[?/to and,
thus, Xo°N"? L ~ L/Z,,, where Z,, = 1/|p[? is the charac-

teristic nonlinear length. In typical experimental condi-
tions, the nonlinearity is smal: L/Z, < 1, and the
denominatorsin (15) can be expanded in seriesto give

2Xg/2 NJJZ

— <
|2d0X0 Y0| = L

(do +dy)°L5

g [2|d1—d2| Lily+|do+dyfLs + |do +d

| o

Provided that d, is negative, both terms on the | eft-hand
side of Eq. (16) have the same sign and, thus, the right-
hand side should be greater than, or equal to, 2|dy|X; + Yp.
Assuming d, > |d,|, one can get from Eg. (16) the fol-

lowing estimate (Y, ~ to/ 22 ):

% + t_o < 4lel + E—D
Zn 72 Z2t, LU

Consider the strong dispersion management limit

ZielL < 1, where Zgq, = t5/d; isthetypical dispersion

length. This limit implies that the optical pulse experi-

ences strong oscillation at each period L dueto the dis-
persion. Then Eg. (17) reduces to

_Go _ 6Ly

dl a an

(17)

+ b0

=8 (18)
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i.e., a nonlinearity (amplitude of the optical pulse)
should be strong enough to allow the DM soliton solu-
tion to exist for a given negative d,.

Equation (15) givesthe necessary, but not sufficient,
condition for the existence of the DM soliton. In other
words, the violation of inequality (15) means that the
DM soliton is forbidden. Of course, it would be inter-
esting to find to what extent this necessary condition for
existence is close to the sufficient one. In general, this
could be done only if one found the DM soliton analyt-
icaly.

Here, one can only mention that thereisaqualitative
correspondence between the threshold of DM soliton
existence, following from the analytical condition (15)
and from the numerical investigation of the DM soliton.
Namely, the maximum value of |d,| (d, < 0) for which
the DM soliton exists growswith anincreasein the dis-
persion map strength L/Z,, according to both numer-
ics (see, eg., [14, 15]) and analytical condition (16). It
aso follows from Eq. (18) that for an asymmetric dis-
persion map L, # L, the maximum possible value of |dy|
growsasL, increases (for fixed L, Z,, d,), in correspon-
dence with Fig. 3in [15].

Equation (15) also has a clear physical meaning in
another limit dy/d, > L/Z,, Zgqq > L, and Z, > L, in
which Eqg. (15) reduces to

(2doXo—=Y0)/ Yo = O(L/ Z4g) < L. (29
Equality 2d,X, = Y, exactly correspondsto the one-soli-
ton solution of the NLS with dispersion d, (see [10]),
where the dispersion d, and the nonlinearity continu-
ously balance each other. Thus, in the limit Zgq, > L,
which is called aweak dispersion limit, we recover the
usual NL S describing the path-averaged (over the space
period L) DM soliton dynamics, provided d, is large
enough. A weak dispersion management limit was
studied earlier [1, 16-18]. Note that an additional con-
dition dy/d;, > L/Z, alows the amplitude d, of the dis-
persion variation to be much higher still than dy,
because one assumesL < Z,.

To summarize, the necessary analytical condition
(15) for the existence of the DM soliton is established.
From the physical point of view, this condition means
that the DM soliton solution can exist only if the non-
linearity is strong enough to compensate the pulse
broadening due to the negative value of the average dis-
persion d,. Note that estimates in Egs. (16)—(19) are
only given herefor a physical interpretation of the ana-
Iytical condition (15). So far, the DM soliton solution
has been obtained numerically [3, 4, 14] and by the
variational [5] and other perturbative approaches [19—
21]. Theseresults are in agreement with condition (15).
But analytical proof of the existence of the DM soliton
in the parameter region satisfying condition (15), i.e.
the sufficient condition for existence, is still an open
guestion.
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